
Self-Supervised Bug Localization and Repair
1st Amir Pourmand

Computer Engineering Department
Sharif University of Technology

Tehran, Iran
pourmand1376@gmail.com

Abstract—This paper focuses on exploiting machine learning
to detect and fix software bugs automatically. To the best of our
knowledge, numerous prior studies have explored this notion but
none of them have utilized pull requests and issues data to draw
out bug information for the code. We want to suggest a model
which can handle both generated bugs and public data sources
to gain insight into how to pinpoint and address bugs.

Index Terms—Bug Detection, Bug Localization, Intelligent
Software Engineering, Machine Learning, Deep Learning

I. INTRODUCTION

The detection and correction of software bugs has been
a longstanding challenge in software development. Bug lo-
calization is important in large software projects due to its
challenging nature and the impact it can have on time and
resources. There are two main reasons for this difficulty.
Firstly, there is a large number of bugs waiting for localization,
for example, Eclipse bug repository receives 200 bugs a
day near its release dates and Debian project receives 150
[1]. Secondly, locating a bug in the source code can take a
significant amount of time, with research showing that most
bugs in PostgreSQL project take 100-200 days to resolve and
50% taking 300 days or more. The situation is similar in
Tomcat project, where most bugs take 40-200 days to resolve,
with only 10% being resolved within 10 hours. In some cases,
5% of bugs may take almost two years to fix [1]. Quickly
resolving these bugs can save significant time and money for
the software project and its stakeholders.

Despite the long-standing tradition of using static analyzers
in bug localization, these methods have their limitations and
challenges. Writing these analyzers can be a complex task
requiring specialized knowledge and a substantial amount of
code, and there may be limited incentives for developers
to contribute to open-source projects like linters [3]. These
limitations and challenges highlight the importance of finding
new and innovative solutions for bug localization.

Efforts are being made to expand the use of deep learning-
based bug detection techniques. These techniques hold the
promise of enhancing the software engineering process. How-
ever, there are still many obstacles to overcome, such as
developing reliable bug detection and repair methods that can
handle a variety of common bugs without relying on large
amounts of pre-labeled data [4].

The structure of the paper is as follows: First, we talk about
what we try to achieve, then we see some related work. After

that, we talk about our methodology and finally, we mention
a step-wise plan on how to solve this problem.

II. PROBLEM STATEMENT

The primary objective of this project is to identify and repair
software bugs. To this end, we seek to answer the following
questions:

• Q1: Is it possible to develop an efficient method for bug
finding and fixing?

• Q2: How efficient are machine learning models for de-
tecting commonly encountered bugs?

• Q3: What are the drawbacks of such machine learning
systems? When do they perform poorly?

• Q4: How influential is the size of the dataset in relation
to other factors?

• Q5: To what extent do supervised and self-supervised data
contribute to bug identification?

Also, we want to investigate the idea of combining security
issues and bug finding. We want to see if we can address
both problems by the same architecture but different input
and output data. This is not the main focus of this project but
something which came into my mind.

III. RELATED WORKS

In the field of software development, finding and fixing
bugs is an important part of the development process. There
have been many techniques developed over the years to help
with this task, including both traditional and machine learning-
based methods [3].

Static bug finding involves scanning the source code for
specific bug patterns. Tools like Error Prone and Infer, which
are used by companies like Google and Facebook, are exam-
ples of these techniques. However, creating and fine-tuning
these tools often requires significant manual effort. There is
also the issue of false positives, where a bug detector reports
a bug that doesn’t actually exist. To address this, researchers
have explored ways to prioritize bugs generated by these tools
as a way of classifying warnings and bugs [5].

In the last decade, researchers in software engineering
and programming languages have discovered that valuable
information about bugs can be obtained from the ambiguous
information in code, such as variable names and comments.
This is because patterns in source code, such as those found
in names, control, and data flow, can be informative. This
information can then be used to detect bugs. DeepBugs, for



example, uses the names of variables and methods to identify
buggy code. They also used generated (fake) bugs and they
found that using these fake bugs helped the program find real
bugs in code. [6]

There have also been studies of the effectiveness of tra-
ditional bug finding techniques, as well as studies of the
impact of data imbalance on machine learning models for
software defect prediction. Data imbalance refers to the fact
that the number of buggy examples in a dataset may be much
smaller than the number of non-buggy examples. To address
this, researchers have explored techniques like under-sampling,
over-sampling, ensemble learning and synthetic sampling [3].

Recently, researchers have been exploring automatic label
generation, known as self-supervised learning. Microsoft’s
BUGLAB is an example of this research. BUGLAB draws
inspiration from self-supervised learning concepts in deep
learning, computer vision, and NLP. Unlike traditional bug
detection methods that require real-life bug data, BUGLAB
trains a bug detection model without it. BUGLAB is similar
to ELECTRA, but utilizes a more sophisticated code rewriting
approach and is used directly for bug detection. The objective
of BUGLAB is similar to that of Generative Adversarial
Networks. BUGLAB trains two models: a detector model that
finds and fixes bugs in code, and a selector model that creates
buggy code for the detector to use for training. The authors
tested BUGLAB using a Python implementation and found
it was up to 30% better than other methods on a dataset of
real bugs, and even found 19 unknown bugs in open-source
software. [4].

IV. METHODOLOGY

A. Data Gathering

Gathering accurate, comprehensive data is essential for
making informed decisions. In this project, we have used
two approaches to gather data: meta-data analysis and self-
supervised approach.

It is essential to note that the level of granularity is a
key factor in this problem. The smallest unit of data that is
used as input for the model can either be a file, class, or
method. Previous studies have demonstrated the effectiveness
of using methods as the smallest unit, so this was chosen as
the granularity level for this project.

1) Meta-Data Analysis: This method involves the use of
data from issues and pull requests to find buggy code. This
is easy to do, as many github repositories use predefined tags
such as bug, issue to address bug-related issues. Additionally,
issues will often have a direct relation to pull requests, as most
standard repositories have some related issues to each PR. This
approach is illustrated in figure 1.

2) Self Supervised Approach: In this approach, we make
some changes to code to make it incorrect. This is accom-
plished by using ideas such as variable misuse, argument
swapping, wrong operator, and wrong literal [4].

Fig. 1. Generating Appropriate Input and Output labels from Github Repos-
itories

B. Bug Localizer
Our task is to accurately pinpoint a set of probable locations

for a bug. This is easy enough for generated data, as we would
be aware of where the bug is placed. For public datasets, we
assume that the altered lines are somehow related to the bug
and mark them as such. We then train a model to assess how
well bugs can be localized within the code.

An alternate idea involves breaking our assumption about
PR code and recognizing that not all modified code is nec-
essarily bug-related. We could then employ a pre-trained ML
model to detect which code is most likely to be identified as a
bug. However, we do not test this concept in the early stages
as it would add complexity to the model, and we believe that
the most successful AI models are the simplest ones.

C. Bug Fixer
Source code and localized bug data which was created in

the preceeding stage of the model can be used as the input
of the model, while the modified code serves as its output.
This model should be designed in the form of a generator,
which attempts to generate recommended code. This can
be formulated via a next-token prediction task, which is a
conventional strategy in natural language processing.

Our proposed model is shown in figure 2

V. STEPWISE DESCRIPTION OF WORKPLAN

A. Replicate Previous Works
To improve upon existing works, we need to be familiar with

the challenges in the field and create a baseline to work off
of. An article from the Microsoft team [4] has been chosen to
provide this baseline. In order to make improvements, we need
to understand the structure of the code and make it possible
to learn from public data sources instead of relying solely on
generated bugs.

In this step, we will both generate buggy datasets and also
train an ML model which identifies and fixes bugs based on
the dataset.



Fig. 2. Architecture of our proposed model

B. Data Gathering

Then, we must obtain information from our sources. Here,
we must extract information concerning Code, Issues, Pull
Request and Actions. We can take advantage of the official
GitHub REST API to crawl this data, a common approach
that is well-documented [7]. This way, we can quickly access
code history, issues, pull requests, and GitHub Actions meta-
data. The only limit we may face here is the limitation of
5000 requests per hour set by GitHub [8]. This barrier can be
alleviated to some extent by using GraphQL instead of REST
API [9].

C. Data Labeling and Preprocessing

We need to filter out the Pull requests and focus on those
that are related to an issue which introduces a bug. To begin
with, we can use a simple approach and only take issues which
have a label of ”bug”.

This process can be made more flexible through the use of
a model, if necessary. There are pre-trained datasets that are
specifically designed for this purpose. They take an issue and
classify them as bug, enhancement, feature and question [10].

We Should also preprocess source code as illustrated in
figure 1.

D. Training

Then, we should train a classifier to detect bugs in the code.
It should be able to assess whether a method contains an error
or not and also provide the probability that the error exists
in the code. Additionally, it should output an array that states
which lines of the code contain errors (if any).

After that, we would take the output result and train an
NLP generator to generate better code. The input should be
the code and the output should be the proposed Pull Request
code. The model should be able to provide PRs that are of the
same quality as those written by professionals.

E. Optional Steps

When an initial model is proposed which is actually work-
ing, we can add in more information from other sources. This
includes GitLab and also private repositories which we will
have access to.

We can also build a GitHub bot to continuously monitor
GitHub repositories, evaluate pull requests, and suggest any
necessary modifications. Additionally, it can alert users if the
code has a high likelihood of containing a bug.

REFERENCES

[1] W. Zhang, Z. Li, Q. Wang, and J. Li, “Finelocator: A novel approach
to method-level fine-grained bug localization by query expansion,”
Information and Software Technology, vol. 110, pp. 121–135, 2019.

[2] S. C. Johnson, Lint, a C program checker. Bell Telephone Laboratories
Murray Hill, 1977.

[3] A. Habib and M. Pradel, “Neural bug finding: A study
of opportunities and challenges,” 2019. [Online]. Available:
https://arxiv.org/abs/1906.00307

[4] M. Allamanis, H. Jackson-Flux, and M. Brockschmidt, “Self-
supervised bug detection and repair,” 2021. [Online]. Available:
https://arxiv.org/abs/2105.12787

[5] S. Kim and M. D. Ernst, “Which warnings should i fix first?” in
Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, 2007, pp. 45–54.

[6] M. Pradel and K. Sen, “Deepbugs: A learning approach
to name-based bug detection,” 2018. [Online]. Available:
https://arxiv.org/abs/1805.11683

[7] “GitHub REST API,” accessed: 2023-01-29. [Online]. Available:
https://docs.github.com/en/rest

[8] “Resources in REST API,” accessed: 2023-01-29. [On-
line]. Available: https://docs.github.com/en/rest/overview/resources-in-
the-rest-api?apiVersion=2022-11-28

[9] “Is there a way to increase the API Rate limit or to bypass it
altogether for GitHub?” accessed: 2023-01-29. [Online]. Available:
https://stackoverflow.com/questions/13394077

[10] M. Izadi, K. Akbari, and A. Heydarnoori, “Predicting the objective
and priority of issue reports in software repositories,” 2020. [Online].
Available: https://arxiv.org/abs/2012.10951


